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1  Introduction 
 
In this paper we introduce and study (on the quali-
tative level) the concept of elementary (singleton) 
expansion of a countable bundle of non-linear dy-
namic processes allowing differential implementa-
tion in the class of quasi-linear controlled systems 
in the infinite-dimensional Hilbert space. The re-

ceived results are a natural evolution of non-linear 
system analysis of complex differential models [13] 

and may be useful in the study of inverse problems 
for partial differential equations [4, 5]; statement of 
the problem considered below, was proposed in the 
conclusions of the work [3]. 
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2  Statement of the Problem 
 
Further (X,||||X), (Y,||||Y), (Z,||||Z) are real separable 
Hilbert spaces (pre-Hilbert [6] define norms ||||X, 
||||Y, ||||Z), U := X  Y  Z is the Hilbert space with the 

norm ||(x,y,z)||U := (||x 2||X + ||y 2||Y + ||z 2||Z )1/2, x, y, z  

U, L(Y,X) is the Banach space with the operator 
norm ||||L(Y,X) of all linear continuous operators from 
the space Y to the space X (similar (L(X,X),||||L(X,X)) 
and (L(Z,X),||||L(Z,X))), T := [t0, t1] is a segment of the 
real line R with the Lebesgue measure μ and  is 
the σ-algebra of all μ-measurable subsets of the in-
terval T. 

If below (B,||||) is a some Banach space, then as 
usual through L2(T,μ,B) we will denote Banach quo-
tient-space of classes μ-equivalence of all integrable 
maps f : T  B of Bochner [6, c. 189] with the 

norm (T||f()||2μ(d))1/2. In addition everywhere fur-
ther AC(T,X) is the linear set of all absolutely con-
tinuous on T functions (with respect to μ measure) 
with values in the space X, moreover 

Π := AC(T,X)  L2(T,μ,Y)  L2(T,μ,Z), 
L2 := L2(T,μ,L(X,X))  

 L2(T,μ,L(Y,X))  L2(T,μ,L(Z,X)). 
Now we will distinguish for consideration con-

trolled differential models of the form 
dx/dt = Ax + Bu + B#u#(x),                 (1) 

where (x,u,u#(x))  Π, x is a Carathéodory solution1 
(C-solution), u is a programmed control, u#(x) is a 
poly-linear control (state feedback), and (A,B,B#)  

L2; in purposes of terminological convenience triple 
of vector-functions (x,u,u#(x)) we will also call C-
solution and triple of operator-functions (A,B,B#), 

adhering the terminology from [78], we will call 
non-stationary (A,B,B#)2-model of vector field [5] of 
differential equation (1). 

The problem of elementary extension of quasi-linear 
differential realization of the bundle of dynamic processes 
[7]: for a given poly-linear law 

x   u#(x): AC(T,X)  L2(T,μ,Z) 
and fixed families N, N* of processes “inputoutput” 
such that 

N, N*
  {(x,u,q)  Π: (x,u,q) = (x,u,u#(x))}, 

1  Card N  0א (aleph-zero), 
Card N* = 1, N*  N, 

where N, N* have individual differential realizations 
(1), to determine analytical conditions under which 
N  N* is a family of C-solutions of some differen-
tial equation (1). 
 
                                                           
1 When equality in (1) is considered as identity in Banach 
space L1(T,μ,X). 

 

3  Existence of Elementary Extension 
    of Countable Quasi-Linear Bundle 
    of Control Dynamic Processes 
 
We endow the space 

H2 := L2(T,μ,X)  L2(T,μ,Y)  L2(T,μ,Z) 
with the topology of the norm 

(T ||(g(),w(),q()) 2||U μ(d))1/2,  (g,w,q)  H2; 

clear, that H2 is the Hilbert space [6]. 
We differ the element (x,u,u#(x))  Π in the nota-

tions as class of equivalence (i.e. element out of the 
space H2) from the specific representative (vector-
function) (x(),u(),u#(x())) from this class. 

We will denote through GЕ arbitrary (but fixed 
and numbered) algebraic basis in E := Span N and let 
{(x*,u*,u#(x*))}:= N*, while (x*,u*,u#(x*))E. It is ob-
vious that at any point tT expansion in the Hilbert 
space of U vector (x*(t),u*(t),u#(x*(t))) is possible on 
the projection in 

Span{(x(t),u(t),u#(x(t)))i: 
(x(),u(),u#(x()))i  GE, i=1, 2, …}  U, 

which is denoted by (x*
(t),u*

(t),u#
(x*(t))) and addi-

tion 
(x*

(t),u*
(t),u#

(x*(t))) := 
= (x*(t),u*(t),u#(x*(t)))  (x*

(t),u*
(t),u#

(x*(t))). 
Lemma 1. Vector-functions 

t   (x*
(t),u*

(t),u#
(x*(t))): T  U, 

t   (x*
(t),u*

(t),u#
(x*(t))): T  U 

are μ-measurable mappings. 
(By the separability of U weak and strong measura-
bilities coincide [6, p. 187].) ■ 

Lemma 2. Representation 
(x*,u*,u#(x*)) = 

= (x*
,u*

,u#
(x*)) + (x*

,u*
,u#

(x*)) 
doesn’t depend on the choice of algebraic basis GE, 
while 

(x*
,u*

,u#
(x*)), (x*

,u*
,u#

(x*))  H2. ■ 
We denote through E and *

 circuits in the 
space H2 respectively to linear manifolds Span{(x, 
u,u#(x)):   F, (x,u,u#(x))  E} and Span{(x*

,u*
, 

u#
(x*)):   F}, where F is a family of equivalence 

classes (mod μ) of all characteristic functions induced 

by elements of σ-algebra . 
Lemma 3. Subspaces E, *

  H2 are orthogo-
nal, i.e. E  *

. ■ 
Remark 1. Everywhere further for two closed 

subspaces from the space H2, such that their inter-
section is {0}  H2, and the vector sum is closed in 
H2 we agree to denote the sign of their vector addi-
tion through , in particular, Theorem 14.С [9, p. 
42] and Lemma 3 make note E  *

 correctly. 
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We ask the question: what are the analytical con-
ditions imposed on the sets of controlled dynamic 
processes N and {(x*,u*,u#(x*))}, “extended” family 
of processes N  {(x*,u*,u#(x*))} has a differential 
realization (1)? On one of the ways of geometric so-
lution of this problem is construction of characteris-
tic feature (see below Theorem 1) defining equality 

Е + * = Е  *
,                      (2) 

where * is closure in the space H2 of linear mani-
fold Span{(x*,u*,u#(x*)):   F}, while a particular 
form of equation (2), namely, of the type 

Е  *= Е  *
,                     (3) 

positively responds to the aforesaid issue about the 
realization of the expanded bundle N  {(x*,u*, 
u#(x*))} in the context of approach to geometric so-
lution of the task of expansion of differential realiza-
tion based on the Theorem 14.C [9, p. 42] and Theo-
rem 3 [7]; below Theorem 2 detects one characteris-
tic property of equality (3). 

Further T0 := {t  T: (x*
(t),u*

(t),u#
(x*(t))) = 0} 

, *
, *

 are Lebesgue replenishments of 
measures 

S ||(x*
(),u*

(),u#
(x*())) 2||U μ(d),  S , 

S ||(x*(),u*(),u#(x*())) 2||U μ(d),  S . 

Theorem 1. Е + * = Е  *
 only if 

L2(T,*
,R) = L2(T,*,R), 

where   F is the characteristic function of the set 
T\T0. 
Proof of Theorem 1 we reduce to the establishment 
of Lemma 4 and Lemma 5. ■ 

Lemma 4. Е + *
  Е  *

. 
Proof. Let   *, then according to Lemma 4 

[7] will be 
 = (x*,u*,u#(x*)) = 

= (x*
,u*

,u#
(x*)) + (x*

,u*
,u#

(x*)), 
where   L2(T,*,R). Further, since for each func-
tion   L2(T,*,R) we have 

2(t) ||(x*(t),u*(t),u#(x*(t))) 2||U  

 2(t) ||(x*
(t),u*

(t),u#
(x*(t))) 2||U , 

then the following embedding of functional spaces is 

true 
L2(T,*,R)  L2(T,*

,R), 
where (x*

,u*
,u#

(x*))  *
 (based on the analyt-

ical structure of the subspace *
, given in Lemma 4 

[7]). Thus, by the arbitrariness of the choice of the 
element   *, the lemma will be proved as soon as 
we discover: 

(x*
,u*

,u#
(x*))  E. 

For this it is sufficient to show (Corollary [6, p. 
157]) that <(x*

,u*
,u#

(x*)), >H2 = 0, where 

<,>H2 is the scalar product in H2, for all   H2, 

such that <, >H2 = 0, for any   Span{(x,u, 
u#(x)):   F, (x,u,u#(x))  E}, which is equivalent to 
install: 

(t)  Span{(x(t),u(t),u#(x(t)))i: 
(x(),u(),u#(x()))i  GE, i=1, 2, …} 

μ-almost everywhere in T, here  is the relation of 
orthogonality in the space U. 

We expand vector-function () in each point t 

T in the sum of 
_(t) + (t) := (t), 

Where 
(t)  Span{(x(t),u(t),u#(x(t)))i: 

(x(),u(),u#(x()))i  GE, i=1, 2, …}, 
and (t) is orthogonal to 

Span{(x(t),u(t),u#(x(t)))i: 
(x(),u(),u#(x()))i  GE, i=1, 2, …}. 

Then if   0, there exists such set S*
  , 

μ(S*) > 0, that (t)  0, t  S*, while in the basis 
GЕ there is such vector (x(),u(),u#(x()))i, that is 

(x(t),u(t),u#(x(t)))i  0 
μ-almost everywhere in set S*; otherwise for μ- al-
most all t  S* equalities will be “realized” 

Span{(x(t),u(t),u#(x(t)))i: 
(x(),u(),u#(x()))i  GE, i=1, 2, …} = {0}  U, 

and therefore _ = 0 should be performed in this 
position. 

Now we denote through S*
+ and S*

 subsets (par-
tition) S* equal 

S*
+={tS*: <(t),(x(t),u(t),u#(x(t)))i>U 0}, 

S*
={tS*: <(t),(x(t),u(t),u#(x(t)))i>U <0}. 
It is obvious that at least one of the sets S*

+ or 
S*

 has a nonzero measure. Let S*
+ acts as such set. 

Then 
+(x,u,u#(x))i  Span{(x,u,u#(x)): 

  F, (x,u,u#(x))  E} 
and <, +(x,u,u#(x))i>H2>0, where + is the char-
acteristic function of a set S*

+. It is clear that we 
obtain <, +(x,u,u#(x))i>H2 > 0 whereby we arrive 
at a contradiction with the conditions defined above 
the construction of the functional . ■ 

The above proof provides a useful clarification: 
Corollary 1. L2(T,*,R)  L2(T,*

,R). ■ 
Lemma 5. Е + *  Е  *

  L2(T,*
,R) = 

L2(T,*,R). 
Proof. (). Let L2(T,*

,R) and  := (x*
, 

u*
,u#

(x*)), where (Lemma 4 [7])   Е  *
, 

means (assumption )   Е + *. Then by Е 
 *

 vector  has an expansion of (unique) form 
 =  + (x*

,u*
,u#

(x*)), 
where  = 0  E, at this effect   Е + * repre-
sentation is true: 

 = +*(x*,u*,u#(x*)) = 
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= +*(x*
,u*

,u#
(x*)) + *(x*

,u*
,u#

(x*)), 
where   E, *

  L2(T,*,R). Since (reasoning’s 
are similar to the proof of Lemma 4 [7]) the inclu-
sions take place *(x*

_,u*
_,u#

_(x*))  E, *(x*
,u*

, 
u#

(x*))  *
, theт  = +*(x*

_,u*
_,u#

_(x*)) and 

(x*
,u*

,u#
(x*)) = *(x*

,u*
,u#

(x*)). Thus, taking 
into account the presence of a linear isometry be-
tween L2(T,*

,R) and *
 (Lemma 4 [7]) will be  

= *, where in the end by the arbitrariness of the 
choice of function , we obtain 

L2(T,*
,R)  L2(T,*,R) 

or, taking into account Corollary 1, will be 
L2(T,*

,R) = L2(T,*,R). 
(). Let   Е  *

. Then  =  + (x*
, 

u*
,u#

(x*)), where   Е,   L2(T,*
,R). Since 

(assumption )    L2(T,*,R), then we have a 
bunch of equalities 

 + (x*
,u*

,u#
(x*)) = 

=  + (x*
,u*

,u#
(x*)) + 

+ (x*
,u*

,u#
(x*))  (x*

,u*
,u#

(x*)) = 
=   (x*

,u*
,u#

(x*)) + (x*,u*,u#(x*)), 
therefore,   Е + * taking into account 

(  (x*
,u*

,u#
(x*)))  Е, 

(x*,u*,u#(x*))  *. ■ 
Now we present a variant of characteristic con-

ditions of equality (3). 
Theorem 2. If we implement T0 =  (mod μ) of-

fer is valid: 
Е  * = Е  *

  
 L2(T,*

,R) = L2(T,*,R). 
Proof. That is 

Е + * = Е  *
  

 L2(T,*
,R) = L2(T,*,R) 

is a direct statement of Theorem 1. On the other 
hand, confirmation of equality 

Е  *
 = {0}  H2 

follows from the assumption 
{t  T: (x*

(t),u*
(t),u#

(x*(t))) = 0} =   (mod μ) 
and Corollary of Mazur’s Theorem [6, p. 157]. ■ 

Theorem 1 (given the finding of Lemma 5) and 
Theorem 2 attracting Theorem 14.C from [9, p. 42] 
and Theorem 3 from [7] do a fair conclusion: 

Corollary 2. The following three properties are 
equivalent: 

L2(T,*
,R)  L2(T,*,R)  

 L2(T,*
,R) = L2(T,*,R)  

 Е  *
 = Е + *, 

and if T0 =  (mod μ), then any signified property 
turns the bundle N  {(x*,u*,u#(x*))} into the set of 
dynamic processes with the quasi-linear differential 
realization (1). ■ 

Remark 2. Corollary 2 allows to call Theorem 2 
as “direct theorem” about elementary algebraic ex-

tension of differential realization while hypothesis: 
T0 =  (mod μ), N  {(x*,u*,u#(x*))} has a realiza-
tion (1)  L2(T,*

,R)  L2(T,*,R) in general case 
isn’t confirmed that the following example illus-
trates. 

Example 1. Let X = Y = R, T = [1, 1], u#() = 0 
and 

N = {t(e-t,0,0): tT}, 
{(x*,u*,u#(x*))} = {t(e-t + t 1,t,0): tT}; 

it is obvious that T0 =  (mod μ) and the bundle N 
 {(x*,u*,u#(x*))} has a realization (1); we note that 
T0  . Then L2(T,*,R) = L2(T,μ,R) and L2(T,*

,R), 
*

 = 2μ(d), because (x*
(t),u*

(t),u#
(x*(t))) = (0, 

t,0). It is clear that 1/t  L2(T,*
,R), 1/t  L2(T,μ,R), 

where L2(T,*
,R)    L2(T,*,R); hence by Lemma 5 

we also conclude that 
Е  *

  Е + *. 
Next statement shows that the construction simi-

lar to Example 1 can’t be realized in the functional 
class AC(T,X)  {0}  {0}  Π, i.e. for free trajecto-
ries (C-solutions) it can be said that for N  AC(T,X) 

 {0}  {0} Corollary 3 in a known sense is oppo-
site to Corollary 2 (see above Remark 2). 

Corollary 3. If N  AC(T,X)  {0}  {0}  Π, 
Card N <  and N  {(x*,0,0)}  Π is a set of tra-
jectories with the differential realization (1) with 

u() = 0  L2(T,μ,Y), 
u#() = 0  L2(T,μ,Z), 

then the following relations are true: 
T0 = , 

L2(T,*
,R) = L2(T,*,R), 

Е  * = Е  *
. 

Proof. It is easy to see that T0 = , because oth-
erwise there exists a period of time t*  T, which 
x*(t*) = ix(i)(t*), where all constants i, except the 
finite number are zero, x(i) is the first component of 
the triple (х,0,0)i  GE. Consequently, the trajectory 

x*() has a representation ix(i)() by the uniqueness 
of solution, extending at time t* through the point 
х*(t*), for the differential system (1) with (A,0,0)2-
model, corresponding to a set of dynamic processes 
N  {(x*,0,0)}; that is contrary to its earlier condi-
tion (x*,0,0)  E. 

Further, because of the continuity of the trajec-
tory x*() and the compactness of the interval T, there 
exist such real constants c1, c2 > 0, that equalities are 
true 

inf {||x*(t)||X: t  T} = c1, 
sup {||x*(t)||X: t  T} = c2, 

similarly (including T0 = , Card N < ), for some 
c3, c4> 0 will be 

inf {||x*
(t)||X: t  T} = c3, 
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sup {||x*
(t)||X: t  T} = c4. 

Consequently, the classes of real-valued functions 
summable with square on T on measures 

*
 = ||x*() 2||X μ(d), 

*
= ||x*

() 2||X μ(d), 
or in other words 

L2(T,*,R) = L2(T,*
,R), 

and hence (see Theorem 2) 
Е  * = Е  *

. ■ 
If we look at Theorem 2 under foreshortening of 

unmanaged trajectories of a differential system (1), 
we can see that the analyst of output condition 

L2(T,*,R) = L2(T,*
,R) 

in the proof of Corollary 3 enables us to strengthen 
this theorem to the characteristic feature of elemen-
tary algebraic extension of differential realization of 
a finite buddle of unmanaged implementation pro-
cesses 

N  AC(T,X)  {0}  {0}  Π. 
Theorem 3. In the family of free С-solutions the 

problem of singleton expansion of differential real-
ization of the finite bundle of trajectories is solva-
ble if and only if T0 = . 
 
 

4  Conclusion 
 
The external world is too complex. And any research-
er working in natural sciences is happy when he 
manages to understand at least some minor, trivial 
part of the regularities inherent in nature. The point 
is that in order to reach such an understanding, a 
researcher normally applies some simplified and 
idealized models (in particular, also quasi-linear 
ones [7]), which ignore unimportant (from his view-
point) details, which could somehow complicate the 
investigation, and at the same time reflect (as he 

hopes) the most essential properties of the scruti-
nized natural object. Roughly speaking, in this pro-
cess, the researcher behaves as follows: (i) the issue 
of choosing a class of models is solved by him within 
a definite branch of natural sciences; (ii) after the 
period of field investigations and preliminary analy-
sis of the results, he addresses a mathematician [10, 
p. 14]. Mathematics allows one to draw conclusions 
on the basis of a class of models chosen [11]. 

A qualitative method of analysis of the geomet-
ric characteristics of the existence of non-stationary 
(A,B,B#)2-model of vector field, including in the 

class of its feasible solutions advanced countable 

bundle of complex dynamic processes was proposed 
and developed in this paper. Allocated problem is 

mathematically self-sufficient, because it is of excep-

tional interest from the standpoints of understanding 

the fine topological-algebraic structure of the set of 
controlled dynamic processes, having the differential 
realization (1). It is possible that the next productive 

intention in this study lies in the clarification (includ-
ing higher-order differential realization [1215]) of 

how the geometric feature (2) in the structure Н2, al-
lowing to obtain the Theorem 2 about singleton ex-
tension of dynamic bundle depends on the condition 
T0 =  (mod μ). 

Note that the problem of elementary expansion of 
the differential implementation of a countable bun-
dle of controlled multi-linear dynamic processes can 
also be solved on the basis of the semiadditive prop-
erty [16, p. 400] of the non-linear functional Rayleigh 

Ritz operator [1719]. 
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